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I use a previously introduced mapping between the continuum percolation model and the Potts fluid to
derive a mean field theory of continuum percolation systems. This is done by introducing a new variational
principle, the basis of which has to be taken, for now, as heuristic. The critical exponents obtained are
b51, g51 andn50.5, which are identical with the mean field exponents of lattice percolation. The critical

density in this approximation isrc51/Ve
† whereVe

†5*dxWp(xW )$exp@2v(xW)/kT#21%. p(xW ) is the binding prob-

ability of two particles separated byxW andv(xW ) is their interaction potential.@S1063-651X~96!13411-5#

PACS number~s!: 64.60.Ak

I. INTRODUCTION

The first paper in this series@1#, hereafter referred to as I,
contained a general formalism of continuum percolation.
Such a system consists of classical particles interacting
through a pair potentialv(rW i ,rW j ), such that they can also bind
~or connect! to each other with a probabilityp(rW i ,rW j ). The
function q(rW i ,rW j )512p(rW i ,rW j ) is the probability of discon-
nection.

The formalism is based on a quantitative mapping be-
tween the percolation model and an extension of the Potts
model I have named the Potts fluid. For easy reference, I
recall here the essential definitions and results.

The s-state Potts fluid is a system ofN classical spins
$l i% i51

N interacting with each other through a spin-dependent

pair potentialV(rW i ,l i ;rW j ,l j ), such that

V~rW i ,l i ;rW j ,l j ![V~ i , j !5H U~rW i ,rW j ! if l i5l j

W~rW i ,rW j ! if l iÞl j .
~1.1!

The spins are coupled to an external fieldh(rW) through an
interaction Hamiltonian

Hint52(
i51

N

c~l i !h~rW i !, ~1.2!

where

c~l!5H s21 if l51

21 if lÞ1.
~1.3!

Up to some unimportant constants, the Potts fluid partition
function ~more precisely, the configuration integral! is

Z5
1

N! ($lm%
E drW1•••drWNexpF2b(

i. j
V~ i , j !

1b(
i51

N

h~ i !c~l i !G . ~1.4!

The magnetization of the Potts fluid is defined as

M5
1

bN~s21!

] lnZ

]h
, ~1.5!

whereh is the now constant external field. The susceptibility
is

x5
]M

]h
. ~1.6!

Then-density functions of the Potts fluid are defined as

r~n!~rW1 ,l1 ;rW2 ,l2 ; . . . ,rWn ,ln!

5
1

Z~N2n!! E drWn11•••drWN

3expF2b(
i. j

V~ i , j !2b(
i51

N

h~ i !c~l i !G . ~1.7!

Of particular interest is the spin pair-correlation function,
defined as

gs
~2!~xW ,a;yW ,g![

1

r~xW !r~yW !
r~2!~xW ,a;yW ,g!, ~1.8!

which tends to 1 whenuxW2yW u→`. Herer(xW ) is the numeri-
cal local density at the pointxW . It is often useful to define a
connected spin pair-correlation as

hs
~2!~xW ,a;yW ,g![gs

~2!~xW ,a;yW ,g!21. ~1.9!

This function tends to zero whenuxW2yW u→`.
Any continuum percolation model defined byv( i , j ) and

p( i , j ) can be mapped onto an appropriate Potts fluid model
with a pair-spin interaction defined by

U~ i , j !5v~ i , j !,

exp@2bW~ i , j !#5q~ i , j !exp@2bv~ i , j !#. ~1.10!

The relation between the Potts magnetization and the perco-
lation probabilityP(r) is
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lim
h→0

lim
N→`

lim
s→1

M5P~r!. ~1.11!

For densities lower than the critical density, the suscepti-
bility is directly related to the mean cluster sizeS,

lim
h→0

lim
N→}

lim
s→1

x5bS ~r,rc!. ~1.12!

An important quantity in the percolation model is the pair-
connectedness functiong†(xW ,yW ), the meaning of which is

r~xW !r~yW !g†~xW ,yW !dxWdyW5
~probability of finding two particles in regionsdxW anddyW around the positionsxW andyW ,

such that they both belong to the same cluster.)
~1.13!

This function is related to the mean cluster size by

S511rE drWg†~rW !, ~1.14!

where we assume, as we usually shall, that the system is
translationally invariant, so thatg†(xW ,yW )5g†(xW2yW ) and
r(xW )5r(yW )5r.

The pair connectedness is related to the Potts pair-
correlation functions by

g†~xW ,yW !5 lim
s→1

@gs
~2!~xW ,s;yW ,s!2gs

~2!~xW ,s;yW ,h!#

5 lim
s→1

@hs
~2!~xW ,s;yW ,s!2hs

~2!~xW ,s;yW ,h!#,

~1.15!

wheres,hÞ1 andsÞh.
As usual, the first approach to any phase transition is to

find the mean field theory. This is the aim of the present
paper. The mean field theory for the magnetization~i.e., the
percolation probability! and for the susceptibility~i.e., the
mean cluster size! is developed in Sec. II from a physical
point of view. Then, in Sec. III, I show that the same results
can be obtained from a variational principle, which, how-
ever, remains at present a heuristic device. Section IV uses
the variational principle to obtain the pair connectedness
within the mean field approximation. Section V sums up the
results.

II. MEAN FIELD THEORY FOR M AND x

As usual, the basic assumption of mean field theory is that
every spin l feels an average, homogeneous interaction
H(l)/b due to all the other spins. Since the fieldh distin-
guishes spins in state 1 from all the others, we assume that
H(l) takes two values,H(l51), andH(lÞ1), this last
being identical for all spin states other than 1. This is be-
cause the field preserves the symmetry between the non-1
spin states.

From Eq.~1.4!, the configuration integral~or the partition
function, up to nonimportant constants! is, in this approxi-
mation,

Z5
1

N! H E drW(
l

exp@2H~l!2bh~rW !c~l!#J N.
~2.1!

Now separating the casel51 from thes21 caseslÞ1,
and recalling the definition ofc(l), @Eq. ~1.3!#, we have

Z5
1

N! F E drWV GN, ~2.2!

with

V[exp@2H~l51!1b~s21!h~rW !#

1~s21!exp@2H~lÞ1!2bh~rW !#. ~2.3!

Let us denote

B1[exp@2H~l51!#,

Br[exp@2H~lÞ1!#. ~2.4!

For a constant field, Eq.~2.3! becomes

Z5
VN

N!
@B1e

b~s21!h1~s21!Bre
2bh#N. ~2.5!

The magnetization is obtained from Eq.~1.5!,

M5
1

N~s21!b

] lnZ

]h
5

B1e
b~s21!h2Bre

2bh

B1e
b~s21!h1~s21!Bre

2bh .

~2.6!

In the percolation limits→1, we have

M512 lim
s→1

S Br

B1
De2bsh ~2.7!

or, for h50, whenM becomes the percolation probability
P,

P512 lim
s→1

S Br

B1
D . ~2.8!

This equation is a self-consistency condition because
(Br /B1) depends onM . The reason is as follows. A spin 1
interacts differently with other spins 1 than it does with spins
in other states. As a result,B1 must depend on the average
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number of spins in state 1 and of spins in all other states. The
same reasoning holds forBr . Now, let us denote

n1[ number of spins in state 1,

n[ number of spins in any stateaÞ1. ~2.9!

I showed in I@Eq. ~4.9!# that

M5
1

N
~n12n!. ~2.10!

ThereforeB1 and Br depend onM , ~or P) through n1
andn.

Finding the form of (Br /B1) requires several approximate
arguments, which will be clearer if we start with a simple
case, i.e.,v( i , j )50. In the percolation picture, this means no
interactions. In the Potts fluid picture, this means that the
only interactions take place between nonparallel spins, and
these interactions are given by exp@2bW(i,j)#5q(i,j) @com-
pare Eq.~1.10!#. In this case, a spin 1 interacts only with the
(s21)n spins which are in non-1 states. Similarly, a non-1
spin interacts only with then11(s22)n spins which are
non-parallel to it.

The first step is to notice that here we can take already the
limit s→1, since the term (s21) in the denominator in the
definition ofM , Eq. ~1.5!, has vanished in Eq.~2.7!. In this
limit, a spin 1 interacts with zero@the limit of (s21)n# other
spins, while any non-1 spin interacts withn12n5NM other
spins.

The main argument is now that it is easier to findBr and
B1 in the limit M→1, i.e., when practically all the spins are
in the state 1. Consider first a state where all the spins are in
the state 1. Such a state can be thought of, for example, as
the limit of an infinitely strong field. Then there are no in-
terspin interaction, and the partition function is

Z5
1

N! E d1 . . .dNexp@bNh~s21!#

5
VN

N!
exp@bNh~s21!#. ~2.11!

However, by definition, we also have

Z5
VN

N!
B1
Nexp@bNh~s21!#. ~2.12!

Comparing the equations, we have thatB151. In principle,
this holds in the limitM→1 only; however, as mentioned
above, in thes→1 limit, a spin 1 interacts with no other
non-1 spins. On the other hand, in our case, the interaction
with other spins 1 isv( i , j )50. Therefore,all the interac-
tions vanish and the above result forB1 can be extended to
all values ofM . Hence,B151 in general.

Next consider a state where all spins but one are in the
state 1 ~in the thermodynamic limit, this is stillM51).
Again, the partition function can be calculated easily. For
definiteness, assume that the non-1 spin is always numbered
N. Then, from Eq.~1.4!, we have

Z5
1

~N21!! E d1 . . .dNexpH 2b (
i51

N21

W~ i ,N!

1bh@~N21!s2N#J
5

1

~N21!! F E drW iq~rWN2rW i !GN21

3exp$bh@~N21!s2N#%, ~2.13!

and we must also have

Z5
VN

~N21!!
BrB1

N21exp$bh@~N21!~s21!21#%.

~2.14!

Hence,

Br5F 1VE drWq~rW !GN21

. ~2.15!

Using p(rW)[12q(rW) and denoting

Ve[E drWp~rW !&, ~2.16!

we have

Br5F12
Ve

V GN21

. ~2.17!

Now the powerN21 represents the number of spins which
interact with the non-1 spin. In other words, it isn12n for
this particular configuration. In the thermodynamic limit it
can therefore be replaced byMN. In terms of the density
r5N/V, we can write

Br5F12
rVe

N GMN

. ~2.18!

Now although this equation was derived for the case
M51, it is actually written for an arbitraryM . Conse-
quently, we will nowassumethat we can use it for all values
of M . This is part of the mean field approximation itself, i.e.,
that for the case ofv( i , j )50 we suppose that in the thermo-
dynamic limit,

Br

B1
5 lim

N→`
F12

rVe

N GMN

5exp~2MrVe!. ~2.19!

Substituting this into Eq.~2.7! yields

M512exp~2MrVe2bsh!, ~2.20!

or, for h50,

M512exp~2MrVe!. ~2.21!

This equation is very similar to the one obtained in the mean
field theory of the Ising model. For low densities, its only
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solution isM50. A nonzero solution appears first when the
slopes of the two sides of the equation are equal atM50.
For the critical density,rc , this condition yields the result

rc5
1

Ve
. ~2.22!

Typically @2#, the functionp(rW) is chosen to be

p~rW !5H 1 if rW belongs to some excluded volumeVexcaround the center of the particle

0 otherwise.
~2.23!

ThenVe5Vexc, and Eq.~2.22! becomes

rc5
1

Vexc.
~2.24!

Computer simulations@3# show this result to be correct in the
limit of infinite spatial dimension. This is precisely where
mean field theory is expected to be correct.

Now expanding Eq.~2.20! in the vicinity of the critical
point, we have

M5M
r

rc
2
1

2
M2S r

rc
D 21•••. ~2.25!

Hence the percolation probability, which is equal toM in
this limit, is

P~r!5M'
2rc
r2

~rc2r!;~rc2r!b ~r→rc!,

~2.26!

where in this equation,b is the critical exponent ofP(r).
Therefore we find

b51 ~mean field!. ~2.27!

We can now calculate the susceptibility. From Eq.~2.20!,

x5
]M

]h U
h50

5Fb1rVe

]M

]h Uh50Gexp~2MrVe!

~2.28!

or

x5
be2MrVe

12rVe
. ~2.29!

For r,rc , we have thatx→bS. In this case,M50, so that
the mean cluster size is

x

b
→S5

1

12rVe
;~rc2r!2g. ~2.30!

Hence the critical exponentg is

g51 ~mean field!. ~2.31!

We now wish to extend this argument to cases where
v( i , j )Þ0. The essentials remain unchanged. Again we look
at the limitM→1. This time, when all the spins are in the
state 1, the equivalents of Eqs.~2.11!and ~2.12! yield

B1
N5

1

VNE d1 . . .dNexpF2b(
i51

N

(
i. j

v~ i , j !G .
~2.32!

Similarly, if only one spin is in a state other than 1, we have

B1
N21Br5

1

VNE d1 . . .dNexpF2b (
i51

N21

(
i. j

v~ i , j !G
3 )

i51

N21

q~ i ,N!exp@2bv~ i ,N!#. ~2.33!

Dividing the two equations, we find that in this limit~i.e.,
M→1)

Br

B1
5

*d1 . . .dNP i51
N21q~ i ,N!exp@2b( i. j51

N21 v~ i , j !2bv~ i ,N!#

*d1•••dNexp@2b( i. j51
N v~ i , j !#

. ~2.34!

In general, one cannot compute exactly this ratio. However,
we do not needBr /B1 exactly, but only in the region
M'0, where the critical behavior occurs. Now, from the
previous arguments,Br /B1 can depend onM only through
the excess spin-1 densityMr5r12ra ~wherer1 is the den-
sity of spins 1 andra is the density of spins in any statea
Þ1). Hence we are interested in the region of smallMr. At
first sight, this seems unhelpful, because Eq.~2.34! corre-
sponds to the limitM→1. However,Mr may be made small

by decreasing the density rather thanM . In other words, the
region of interestMr→0 may be obtained by looking at the
limit r→0 even ifM→1.

We therefore take the small density limit of Eq.~2.34! and
extract the leading behavior. Let us introduce the functions

f ~rW !5exp@2bv~rW !#21,

f * ~rW !5q~rW !exp@2bv~rW !#21, ~2.35!
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f †~rW !5 f ~rW !2 f * ~rW !5p~rW !exp@2bv~rW !#.

The function f (rW) is just the Mayerf function @4#. Its use-
fulness stems from its being typically short ranged@i.e.,
f (rW)→0 at urWu→`#. Therefore, integrals overf ~and over
f * and f † as well! remain finite in the thermodynamic limit.

Equation~2.34! now becomes

Br

B1
5

*d1 . . .dNP i51
N21$P i. j@11 f ~ i , j !#@11 f * ~ i ,N!#%

*d1•••dNP i51
N21P i. j@11 f ~ i , j !#

.

~2.36!

Expanding this expression, we find

Br

B1
5

*d1•••dN$11( i51
N21@( i. j f ~ i , j !1 f * ~ i ,N!#1•••%

*d1•••dN$11( i51
N21( i. j f ~ i , j !1•••%

5

11@~N21!~N22!/2V#E drW f ~rW !1~N21/V!E drW f * ~rW !1•••

11@~N21!~N22!/2V#E drW f ~rW !1~N21/V!E drW f ~rW !1•••

. ~2.37!

Keeping now only the leading terms in the density, we obtain

Br

B1
'

11~N21/V!E drW f * ~rW !1•••

11~N21/V!E drW f ~rW !1•••

512
N21

V E drW f †~rW !1•••, ~2.38!

where we have used the definitionf †(rW)5 f (rW)2 f * (rW).
Again, as in Eq.~2.18!, we recognize that the termN21
represents justn12n in this configuration. Hence, once
again, we can replace it withMN and write

Br

B1
'12

MN

V E drW f †~rW !1•••512MrVe
† , ~2.39!

where

Ve
†[E drW f †~rW ! ~2.40!

generalizes Eq.~2.40!, to which it properly reduces if

v(rW)50.
To the same order inr, we may also express Eq.~2.39! as

Br

B1
'exp@2MrVe

†#, ~2.41!

which completes the analogy with Eq.~2.19! for the case
v50. Because of this, all the results for the casev50 apply
to the more general case as well. Hence, for arbitrary poten-
tials and binding criteria, we now find

P512exp~2rPVe
†!,

S5
1

12rVe
† ~r,rc!,

rc5
1

Ve
† 5

1

E drW f †~rW !

,

bMF51,

gMF51. ~2.42!

III. HEURISTIC VARIATIONAL FORMULATION

We would like now to calculate the connectedness func-
tion in the mean field approximation. The previous argu-
ments are inadequate for this task. One knows, however, that
in the Ising model, the correlation function may be calcu-
lated within mean field theory through a variational formu-
lation based on the Bogolyubov-Feynman inequality@5#, i.e.,

Z

Z0
>exp~2b^H1&0!, ~3.1!

where the subscript 0 refers to some reference system and
H15H2H0, whereH is the true Hamiltonian of the system
andH0 is the Hamiltonian of the reference system.

Unfortunately, this inequality is inadequate to deal with
our system, because the potentialv( i , j ) will typically have a
strongly repulsive part~‘‘hard core’’! at short distances, or
else the functionq( i , j ) will typically vanish in some range
~where the binding is certain!, both of which make the right-
hand side of the inequality undetermined. One would there-
fore like a variational formulation of the mean field which
allows for strong effective interactions. I will show that the
mean field developed in Sec. II can be derived from such a
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principle, though I have been unable to formally prove the
principle itself. Its status must therefore be taken at present
to be essentially heuristic.

The motivation is as follows. Let us assume, as usual,
some reference system in which the spins interact only with
an external fieldB. The reference HamiltonianH0 is

H052B(
i51

N

c~l i !. ~3.2!

Then the partition function can be written as

Z5
1

N! ($lm%
E drW1•••drWNH expF2b(

i. j
V~ i , j !

1b~h2B!(
i51

N

c~l i !G J expFbB(
i51

N

c~l i !G
5Z0K expF2b(

i. j
V~ i , j !1b~h2B!(

i51

N

c~l i !G L
0

,

~3.3!

where

Z05
1

N! ($lm%
E drW1•••drWNexpFbB(

i51

N

c~l i !G
5
VN

N!
@ebB~s21!1~s21!e2bB#N, ~3.4!

and^&0 means an average performed in the reference system
with the HamiltonianH0. The convexity of the exponential
function then gives us the Bogolyubov-Feynman inequality,

Z

Z0
>expF K 2b(

i. j
V~ i , j !1b~h2B!(

i51

N

c~l i !L
0

G .
~3.5!

The usual mean field theory follows from extremization with
respect to the parameterB. The resulting approximation to
Z is expected to be good as long asbV is small. Now, if this
is the case, we could also write

2bV~ i , j !'exp@2bV~ i , j !#21, ~3.6!

so that, to this order,

Z

Z0
;expF(

i. j
^e2bV~ i , j !21&01b~h2B!(

i51

N

^c~l i !&0G .
~3.7!

However, at this stage it is not clear what has become of the
inequality in Eq. ~3.5!, because the replacement Eq.~3.6!
increases the exponent, thereby countering the Bogolyubov-
Feynman inequality.

Nevertheless, for smallbV, we expect that (1/N)lnZ can
be approximated by the following function:

Ft~B![
1

N H lnZ01(
i. j

^exp@2bV~ i , j !#21&0

1(
i51

N

b~h2B!^c~l i !&0J . ~3.8!

Typically, of course,V( i , j ) is not uniformly small. The sur-
prising result, however, is that if we use for (1/N)lnZ the
extremumvalue ofFt(B) with respect toB, we shall recover
the mean field theory of Sec. II.

The proof is straightforward. First,

^c~l i !&05
(l i

c~l i !exp@bBc~l i !#

(l i
exp@bBc~l i !#

5
~s21!@ebB~s21!2e2bB#

ebB~s21!1~s21!e2bB . ~3.9!

Next, we rewrite

exp@2bV~ i ,l i ; j ,l j !#215q~ i , j !exp@2bv~ i , j !#21

1p~ i , j !exp@2bv~ i , j !#dl i ,l j
.

~3.10!

Taking the average with respect to the reference system of
the two terms on the right-hand side, we first find

^q~ i , j !exp@2bv~ i , j !#21&05
1

V2E did j$q~ i , j !

3exp@2bv~ i , j !#21%,

~3.11!

which is independent ofB.
The second term is

^p~ i , j !exp@2bv~ i , j !#dl i ,l j
&05

1

Z0N!
E d1•••dN(

$lm%
p~ i , j !expF2bv~ i , j !1bB(

k51

N

c~lk!Gdl i ,l j

5F 1V2E did jp~ i , j !e2bv~ i , j !G(l i ,l j
dl i ,l j

exp$bB@c~l i !1c~l j !#%

@ebB~s21!1~s21!e2bB#2

5F 1V2E did jp~ i , j !e2bv~ i , j !G e2bB~s21!1~s21!e22bB

@ebB~s21!1~s21!e2bB#2
. ~3.12!
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Note that from the definition ofVe
† Eq. ~2.16!, we have

1

V2E did jp~ i , j !exp@2bv~ i , j !#5
Ve
†

V
. ~3.13!

Substituting Eqs.~3.4!, ~3.9! and~3.12! into the definition of
Ft(B) @Eq. ~3.8!#, we have

Ft~B!5C1 ln@ebB~s21!1~s21!e2bB#

1
N21

V SVe
†

V D e2bB~s21!1~s21!e22bB

@ebB~s21!1~s21!e2bB#2
1b~h2B!

3~s21!
ebB~s21!2e2bB

ebB~s21!1~s21!e2bB , ~3.14!

where

C5^q~ i , j !exp@2bv~ i , j !#21&01 lnV2
1

N
ln~N! !

~3.15!

is independent ofB.
We now have immediately that

]Ft

]B
5

b2s2~s21!~h2B!e2bBs

@11~s21!e2bBs#2

1F ~N21!Ve
†

V Gbs~s21!e2bBs~12e2bBs!

@11~s21!e2bBs#3
.

~3.16!

The extremum condition]Ft /]B50 yields the equation

B2h5S rVe
†

bs D 12e2bBs

11~s21!e2bBs . ~3.17!

In this approximation, the magnetization is

M5
1

b~s21!

]Ft

]h
5

1

b~s21! F ]Ft

]B

]B

]h
1S ]Ft

]h D
B

G
5

1

b~s21! S ]Ft

]h D
B

, ~3.18!

where we have used the extremum condition]Ft /]B50.
From Eqs.~3.14! and ~3.17!, we have

M5
ebB~s21!2e2bB

ebB~s21!1~s21!e2bB 5
bs

rVe
† ~B2h!. ~3.19!

Hence we can rewrite Eq.~3.17! as

bsB5bsh1MrVe
† . ~3.20!

Substituting this result back into Eq.~3.19! gives us

M5
12e2MrVe

†
e2bsh

11~s21!e2MrVe
†
e2bsh

, ~3.21!

which is exactly the mean field equation~2.6! with Br /B1
given by Eq.~2.41!. Hence, indeed, all the mean field results
may be obtained from the variational principle ofFt .

Finally, note that from Eq.~3.16!, the extremum ofFt is
actually a maximum. This might suggest the existence of an
inequality lnZ>NFt , but I have been unable to prove it one
way or another.

IV. CORRELATION FUNCTIONS

The variational principle now allows us to find the corre-
lation function in mean field theory. To this end, we need to
relate the Pottsn-density functions defined in Eq.~1.7! to the
partition function. By analogy with a similar formalism in
the theory of liquids@4#, let us define a generalized func-
tional differentiation operator, in the following way. Let
F@ t(rW,l)# be a functional of the functiont(rW,l), which de-
pends on a position variable as well as on an associated
discrete spin variable. Then the generalized functional de-
rivative d̃F/dt will be defined through the relation

dF5E drW(
l

d̃F
dt~rW,l!

dt~rW,l!, ~4.1!

wheredF is the change inF associated with a variationdt in
t(rW,l). The only difference from the usual functional deriva-
tive is in the added summation over the spin variable. This
does not change any of the basic properties of the operator.

I shall show below that the Potts correlation functions are
functional derivatives of the partition function, for fieldsh
which are inhomogeneous. In order to extend the mean field
theory to cover this case, we now need to adopt the follow-
ing heuristic claim.

Heuristic assumption: TheFt variational principle yields
the proper mean field theory of continuum percolation even
for the case of inhomogeneous fieldsh(rW) and B(rW). The
extremum condition must then be generalized to be

d̃Ft

d@bB~rW !c~l!#
50, ~4.2!

which determines the extremizing fieldB(rW).
The application of this extremum condition yields a com-

plicated integral equation. However, for our purpose, we
only needFt@B# in the regionh(rW)→0 and in the vicinity of
the critical regionM (rW)→0. Looking at the results for the
homogeneous case, Eq.~3.20!, we can expect that the ex-
tremizing functionB(rW) will be also very small in this case
~the solution shows this assumption to be self-consistent!.
Therefore, one only needs to look at the extremum condition
for very smallB(rW). The details of this calculation are in the
Appendix. The final result is the condition~to first order in
B)

B~xW !5h~xW !1
r

sE dyWp~xW2yW !e2bv~xW2yW !B~yW ! ~4.3!
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where we assumed thatp(xW ,yW )5p(xW2yW ). Note that ifB and
h are uniform, we recover the first order limit of Eq.~3.17!,
as we should. This equation is easily solved in Fourier space,
where

B̂~kW !5
ĥ~kW !

12~r/s! f̂ †~kW !
~4.4!

with

f †~rW !5p~rW !e2bv~rW !, ~4.5!

and functions with hats are Fourier transforms of the corre-
sponding functions without hats.

Let us now calculate the Potts correlation functions. We
take

t~rW,l!5exp@bh~rW !c~l!#. ~4.6!

Then we have for the partition function from Eq.~1.4!

Z5
1

N! ($lm%
E drW1 ••• drWN)

i51

N

t~rW i ,l i !e
2b ( i. jV~ i , j !.

~4.7!

It is now simple to see that

d̃Z

dt~rW,l!
5

N

N! (
$l2 , . . . ,lN%

E drW2•••drWN)
i52

N

t~rW i ,l i !

3@e2b ( i. jV~ i , j !#
l15l

rW15rW
. ~4.8!

Comparing this to Eq.~1.7!, we see that

r~1!~rW,l!5
t~rW,l!

Z

d̃Z

dt~rW,l!
5

d̃ lnZ

d lnt~rW,l!
. ~4.9!

Similarly, we have that

d̃2Z

dt~xW ,a!dt~yW ,g!
5

1

~N22!! (
$l3 , . . . ,lN%

E drW3•••drWN

3)
i53

N

t~rW i ,l i !@e
2b( i. jV~ i , j !#

rW25yW ;l25g

rW15xW ;l15a .

~4.10!

And a comparison with Eq.~1.7! shows that

r~2!~xW ,a;yW ,g!2r~1!~xW ,a!r~1!~yW ,g!

5t~xW ,a!t~yW ,g!
d̃2lnZ

dt~xW ,a!dt~yW ,g!
. ~4.11!

Within the mean field theory we replace lnZ with NFt@B#.
Making use of the extremum condition, we now have from
Eq. ~4.9! and the definition oft(rW,l), Eq. ~4.6!, that

r~1!~xW ,a!5F d̃NFt

d@bh~xW !c~a!#
G
B

5
N

G
exp@bB~xW !c~a!#,

~4.12!

where

G[(
l
E dzWexp@bB~zW !c~l!#. ~4.13!

The easiest way to calculate the pair-correlation function is
now to use the identity

d̃r~1!~xW ,a!

d@bh~yW !c~g!#
5t~yW ,g!

d̃

dt~yW ,g!
F t~xW ,a!

d̃NFt

dt~xW ,a!
G5t~yW ,g!

d̃NFt

dt~xW ,a!
d~xW2yW !da,g1t~xW ,a!t~yW ,g!

d̃2NFt

dt~xW ,a!dt~yW ,g!

5r~1!~xW ,a!d~xW2yW !da,g1r~1!~xW ,a!r~1!~yW ,g!h~2!~xW ,a;yW ,g!. ~4.14!

On the other hand, we have from Eq.~4.13! that

d̃r~1!~xW ,a!

d@bh~yW !c~g!#
5F12

1

G
ebB~yW !c~g!G

3
N

G
ebB~xW !c~a!

d̃@B~xW !c~a!#

d@h~yW !c~g!#
. ~4.15!

We are interested in this function in the ranger,rc and
h50, which is the one relevant for percolation. In this case,

bothh andB vanish, so that we can evaluate all quantities at
zero fields. Thus, using the fact thatG5sV in this limit ~see
the Appendix!, we have that

r~1!~xW ,a!U
B50

5
N

G U
B50

5
r

s
, ~4.16!

where r5N/V as usual. In the same limit, we also have,
from Eq. ~4.15!
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d̃r~1!~xW ,a!

d@bh~yW !c~g!#
U
h50,B50

5
r

s F12
1

sVG
3

d̃@B~xW !c~a!#

d@h~yW !c~g!#
U
h50,B50

.

~4.17!

In the thermodynamic limit, the second term inside the
brackets on the right-hand side vanishes~its presence is typi-
cal of the use of the canonical rather than the grand canonical
ensemble!. Combining Eqs.~4.17!, ~4.16!, and ~4.14!, we
obtain

r2

s2
h~2!~xW ,a;yW ,g!5

r

s

d̃@B~xW !c~a!#

d@h~yW !c~g!#
U
h50,B50

2
r

s
d~xW2yW !da,g . ~4.18!

Since the system is now homogeneous,h(2) depends only on
the differencexW2yW . Taking the Fourier transform of Eq.
~4.18!, we have that

r2

s2
ĥ~2!~kW ;a,g!52

r

s
da,g1

r

sE dkWeik
W~xW2yW !

3
d̃@B~xW !c~a!#

d@h~yW !c~g!#
U
h50,B50

~4.19!

Finally, we note that from the definition of the generalized
functional derivative,

d̃@B~xW !c~a!#

d@h~yW !c~g!#
5

dB~xW !

dh~yW !
da,g , ~4.20!

where the expressiondB/dh on the right-hand side is now a
usual functional derivative. The properties of the usual func-
tional derivative imply that

E dkWeik
W~xW2yW !

dB~xW !

dh~yW !
U
h50,B50

5
dB̂~kW !

dĥ~kW !
U
h50,B50

5
1

12~r/s! f̂ †~kW !
,

~4.21!

where in the last equality we have used Eq.~4.4!. Substitut-
ing this result into Eq.~4.19! finally yields

ĥ~2!~kW ;a,g!5
f̂ †~kW !

12~r/s! f̂ †~kW !
da,g . ~4.22!

Hence, substituting this into Eq.~1.15! finally yields the pair
connectedness within the mean field approximation,

ĝ†~kW !5
f̂ †~kW !

12r f̂ †~kW !
. ~4.23!

This expression is consistent with Eq.~2.42! for the mean
cluster size through the relation betweenS andg† given by
Eq. ~1.14!.

Since f †(rW)5 f †(2rW), then for smallkW , we have that

f̂ †~kW !5Ve
†2V1

†k21O~k4!, ~4.24!

where

Ve
†5E drW f †~r !,

V1
†5E drW

r 2

6
f †~r !. ~4.25!

Therefore, for small wave vectors, the pair connectedness is

ĝ†~kW !'S f̂ †~kW !

12rVe
†D 1

11@V1
†/~12rVe

†!#k2
. ~4.26!

We expect by analogy with other critical phenomena that

ĝ†~kW !;
1

11j2k2
, ~4.27!

where j is the connectedness length, which in percolation
theory plays a role analogous to the one the correlation
length plays in other critical phenomena@6#. Hence we ob-
tained an expression for the connectedness length within
mean field theory,

j25
V1
†

12rVe
† 5

V1
†rc

rc2r
;~rc2r!2n. ~4.28!

Thus, we find that the mean field value of the exponentn is

n5 1
2 ~mean field!. ~4.29!

V. DISCUSSION

The results of the mean field theory are summarized be-
low:

P512exp~2rPVe
†!,

S5
1

12rVe
† ~r,rc!,

j25
V1
†

12rVe
† ,

rc5
1

Ve
† 5

1

E drW f †~rW !

, ~5.1!

bMF51,

gMF51,

nMF5 1
2 .
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The critical exponents obtained are identical to those ob-
tained in percolation on a Bethe lattice, usually considered as
the mean field equivalent for the lattice percolation model.
This, therefore, addresses one of the questions presented in
the introduction of I, namely the extent and nature of the
continuum percolation universality class. As far as mean
field theory is concerned, we obtained theoretical proof that
this universality class encompasses all interactionsv( i , j )
and all binding criteriap( i , j ), and that it is identical to the
universality class of lattice percolation. This last, inciden-
tally, can be considered as a particular type of continuum
percolation with interactions fixing the particles on the sites
of a lattice. Therefore, the question of the independence of
the critical exponents on the interaction is connected essen-
tially to the relation between continuum and lattice percola-
tion. We know, however, that mean field theory always
grossly overestimates universality, as demonstrated by its be-
ing insensitive even to spatial dimensionality. Thus one can-
not give too much weight to these conclusions. Nevertheless,
the mean field result is an encouraging first step. Certainly
had we found any difference between continuum and lattice
percolation in the mean field approximation, or any depen-
dence on the interaction or the binding criterion, it would
have been highly improbable that a more elaborate calcula-
tion would have restored universality. Thus, at least, our re-
sults are encouraging, if far from definitive.

As to the critical density, we do not expect it to be quan-
titatively adequate, as mean field results never are. However,
as the dimensionality of the system increases, these results
become better and better. Thus, Alon and co-workers@3#
showed that, indeed, for a system of permeable hypercubes,
rcVexc→1 for high dimensions.

As another example, for aD-dimensional system of hard
cores and soft shells@7,8#, we have

v~ i , j !5H ` if urW i2rW j u,a

0 otherwise,
~5.2!

p~ i , j !5H 1 if urW i2rW j u,d

0 otherwise,
~5.3!

wherea andd are two length parameters. Then we obtain in
the mean field approximation

rc5
1

CD~dD2aD!
5

1

CDd
D~12hD!

, ~5.4!

where h[d is the aspect ratio, andCD is the
D-dimensional volume of a unit sphere. Hence, in mean field
theory,rc is a monotonic function of the aspect ratioh. This
contradicts the result of simulations which showrc to have a
pronounced minimum in three dimensions. However, some
computer simulations@9# show that as the dimensionality
increases, the minimum becomes weaker, and, at high di-
mensions, it appears thatrc does increase ever more mono-
tonically. Hence the mean field result again corresponds to
the limit D→`.

The importance of mean field theory is thus not so much
in the numerical results is yields, but rather in the proof of
the usefulness of the theoretical approach presented here.

The mean field equations have been derived wholly within
the Potts fluid picture, where heavy use is made of the avail-
able Hamiltonian formulation. Thes→1 limit then yields the
percolation quantities, which do indeed have the expected
mean field properties. It is hard to see how such results could
have been obtained directly in the percolation picture. This
indicates that other methods which can be applied to the
Potts fluid should yield interesting results for the continuum
percolation problem. This will be the subject of future in-
quiries.

APPENDIX

The functionalFt@B# is defined as in Eq.~3.8!,

Ft~B![
1

N
lnZ01

~N21!

2
^q~ i , j !exp@2bv~ i , j !#21&0

1
~N21!

2
^p~ i , j !exp@2bv~ i , j !#dl i ,l j

&0

1^b@h~ j !2B~ j !#c~l j !&0 . ~A1!

We now have that

lnZ05Nln~G!2 ln~N! !, ~A2!

where

G[(
a

E drWexp@bB~rW !c~a!#. ~A3!

Similarly, we have immediately that

^b@h~ j !2B~ j !#c~l j !&05
1

G(
l j

E d jebB~ j !c~l j !

3@h~ j !2B~ j !#c~l j ! ~A4!

and

^q~ i , j !exp@2bv~ i , j !#&0

5
1

G2 (
l i ,l j

E did jq~ i , j !e2bv~ i , j !eb[B~ i !c~l i !1B~ j !c~l j !] ,

~A5!

^p~ i , j !exp@2bv~ i , j !#dl i ,l j
&0

5
1

G2 (
l i ,l j

E did jp~ i , j !

3e2bv~ i , j !eb[B~ i !c~l i !1B~ j !c~l j !]dl i ,l j
. ~A6!

Taking now the functional derivatives of these terms, we find

d̃ lnZ0

d@NbB~xW !c~l!#
5
1

G
exp@bB~xW !c~l!#, ~A7!
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d̃^b@h~ j !2B~ j !#c~l j !&0

d@bB~xW !c~l!#

5ebB~xW !c~l!
1

G
$211@h~xW !2B~xW !#c~l!%

2ebB~xW !c~l!
1

G2(
l j

E d jebB~ j !c~l j !

3@h~ j !2B~ j !#c~l j !, ~A8!

d̃^q~ i , j !exp@2bv~ i , j !#21&0

d@bB~xW !c~l!#

5ebB~xW !c~l!
2

G2(
l i

E dyWq~xW2yW !e2bv~xW2yW !eb[B~yW !c~l i !

2ebB~xW !c~l!
2

G3 (
l i ,l j

E did jq~ i , j !

3e2bv~ i , j !eb[B~ i !c~l i !1B~ j !c~l j !] , ~A9!

d̃^p~ i , j !exp@2bv~ i , j !#dl i ,l j
&0

d@bB~xW !c~l!#

5ebB~xW !c~l!
2

G2E dyWp~xW2yW !e2bv~xW2yW !eb[B~yW !c~l i !

2ebB~xW !c~l!
2

G3 (
l i ,l j

E did jp~ i , j !

3e2bv~ i , j !eb[B~ i !c~l i !1B~ j !c~l j !]dl i ,l j
. ~A10!

We now expand these expressions aroundB→0. We have
that

G5(
a

E drWexp@bB~rW !c~a!#

'(
a

E drW@11bB~rW !c~a!#. ~A11!

We note that

(
a

c~a!5~s21!1~s21!~21!50. ~A12!

Therefore, to first order,

G5sV1O~B2!. ~A13!

The identity Eq.~A12! simplifies greatly all the functional
derivatives. To first order,

d̃ lnZ0

d@NbB~xW !c~l!#
5

1

sV
exp@bB~xW !c~l!#1O~B2!,

~A14!

d̃^q~ i , j !exp@2bv~ i , j !#21&0

d@bB~xW !c~l!
5O~B2!, ~A15!

and

d̃^b@h~ j !2B~ j !#c~l j !&0

d@bB~xW !c~l!#

5ebB~xW !c~l!
1

sV
$211@h~xW !2B~xW !#c~l!%1O~B2!,

~A16!

d̃^p~ i , j !exp@2bv~ i , j !#dl i ,l j
&0

d@bB~xW !c~l!#

5ebB~xW !c~l!
2

s2V2E dyWp~xW2yW !e2bv~xW2yW !B~yW !1O~B2!.

~A17!

Summing up all these expressions and equating
d̃Ft /d@bBc#50, we obtain the condition

B~xW !5h~xW !1
r

sE dyWp~xW2yW !e2bv~xW2yW !B~yW !1O~B2!.

~A18!
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