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Theory of continuum percolation. Il. Mean field theory
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| use a previously introduced mapping between the continuum percolation model and the Potts fluid to
derive a mean field theory of continuum percolation systems. This is done by introducing a new variational
principle, the basis of which has to be taken, for now, as heuristic. The critical exponents obtained are
B=1, y=1 andv=0.5, which are identical with the mean field exponents of lattice percolation. The critical
density in this approximation is,= 1/, whereV{= [dxp(x){exd —v(X)/kT]—1}. p(x) is the binding prob-
ability of two particles separated b@/andv(i) is their interaction potentia[S1063-651X%96)13411-5

PACS numbds): 64.60.Ak

I. INTRODUCTION 1 dlinZ
M=N(s—1) on (19

The first paper in this seridd], hereafter referred to as |,

contained a general formalism of continuum percolation,yhereh is the now constant external field. The susceptibility
Such a system consists of classical particles interacting

through a pair potential(r; ,r;), such that they can also bind

(or connect to each other with a probabilitp(r; r;). The _M 16
function q(r; ,r;)=1—p(r;,r;) is the probability of discon- X~ oh '
nection.

The formalism is based on a quantitative mapping beThe n-density functions of the Potts fluid are defined as
tween the percolation model and an extension of the Potts

model | have named the Potts fluid. For easy reference, p™(r1,A1if2,X2; ... .Fn:Ap)
recall here the essential definitions and results.
The s-state Potts fluid is a system &f classical spins - 1 dre.....dr
AN ing wi in- Z(N—n)! ntl N
{\i}i=, interacting with each other through a spin-dependent
pair potentiaIV(Fi Y ;FJ- ,\;j), such that N
.. Xexr{—ﬁz V(i,j)= B2 h(i)yp(n) |. (1.7)
- > L U(rl ,I’J) |f )\|:)\] 1>] i=1
V(I’,,)\|,I’J,)\])EV(I,1)= > > . . . i i i . .
W(ri,ry) i AFEA. Of particular interest is the spin pair-correlation function,
(1.1 defined as
The spins are coupled to an external fidal(f) through an 1
interaction Hamiltonian (52>(>Z,a;§, y)=———p?2(x,2}y,7), (1.9
N p(X)p(y)
Hine= _;1 PADN(Ti), (1.2 which tends to 1 whefx—y|— . Herep(x) is the numeri-
cal local density at the point. It is often useful to define a
where connected spin pair-correlation as
sog=|H Tt w3 h2(% @y ) =0@ (K ayy)~1. (L9
-1 if N#1l

. H fuid artition TS function tends to zero whem—y|— .
Up to some unimportant constants, the Potts fluid partition ~ sny continuum percolation model defined byi j) and

function (more precisely, the configuration integris p(i,j) can be mapped onto an appropriate Potts fluid model
with a pair-spin interaction defined by

1 - -
Z=— fdr~~dr exg — V(i,j . -
'\”{xzm} oo p[ ng (h) UG, =v(i.j).
N - - - - - .
+B2 h(i) (N |. (1.4) exd —BW(i,j)]=q(i,j)exd —Bv(i,j)]. (1.10
i=1
The relation between the Potts magnetization and the perco-
The magnetization of the Potts fluid is defined as lation probabilityP(p) is
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lim lim limM=P(p). (1.11 lim Iim limy=pBS (p<p.). (1.12
h—0 N—ow s—1 h—0 N—x s—1

For densities lower than the critical density, the susceptiAn important quantity in the percolation model is the pair-
bility is directly related to the mean cluster si3e connectedness functiagi (x,y), the meaning of which is

. - .- . (probability of finding two particles in regiordx anddy around the positions andy,
p(X)p(y)g'(x,y)dxdy= (1.13
such that they both belong to the same cluster.)

This function is related to the mean cluster size by Now separating the case=1 from thes—1 cases\#1,
and recalling the definition ofs(\), [Eq. (1.3)], we have
S:1+pf drg’(r), (1.14 |
1 -
. Z=—1| | drQ| , 2.2
where we assume, as we usually shall, that the system is N! U ' 2.2
translationally invariant, so thag'(x,y)=g'(x—y) and with
p(X)=p(y)=p.
The pair connectedness is related to the Potts pair- R
correlation functions by Q=exd —H(A=1)+B(s—=1)h(r)]
g'(xy)=lim[g? (X, 03y,0) ~ g7 (X, 03y, m)] t(s—Dex{—HO#D-ph(N]. 23
s—1
Let us denote
=lim[h@(x,0;y,0)—hP(X,0;y,7)],
s-1 B;=exg —H(A=1)],
(1.15
whereo,n#1 ando# 7. B=exg—H(\#1)]. 2.4
As usual, the first approach to any phase transition is t '
find the mean field theory. This is the aim of the presen(tlj:Or a constant field, Eq2.3) becomes
paper. The mean field theory for the magnetizafion, the "
percolation probability and for the susceptibilityi.e., the _v B(s—1)h _ ~ gh N
mean cluster sizeis developed in Sec. Il from a physical Z= N! [B.e +(s=1)Be % 29
point of view. Then, in Sec. I, | show that the same results
can be obtained from a variational principle, which, how-The magnetization is obtained from Eg.5),
ever, remains at present a heuristic device. Section IV uses
the variational principle to obtain the pair connectedness 1 oinz B,efs-Dh_p g AN
\r/;ig:JiITsthe mean field approximation. Section V sums up the M= N(s—1)3 oh = BTy (5= i)Bre*ﬁh .
' (2.6
Il. MEAN FIELD THEORY FOR M AND x In the percolation limits— 1, we have
As usual, the basic assumption of mean field theory is that
every spin\ feels an average, homogeneous interaction . [By _ gsh
H(\)/B due to all the other spins. Since the fidlddistin- M :1_1”“1 B,/° 27

guishes spins in state 1 from all the others, we assume that
H()) takes two valuesH(h=1), andH(x#1), this last o f5r h=0, whenM becomes the percolation probability
being identical for all spin states other than 1. This is be-
cause the field preserves the symmetry between the non-1
spin states.

From Eq.(1.4), the configuration integrdbr the partition
function, up to nonimportant constants, in this approxi-
mation,

. [ B
P=1—lim|—"]. 2.9
s—1 Bl

1 N This equation is a self-consistency condition because
7— = “H(N) = Bh(T _ (B,/B;) depends oM. The reason is as follows. A spin 1
N! [ J dr; exil (A)=Bh(n) (0] interacts differently with other spins 1 than it does with spins
(2.2 in other states. As a resulB; must depend on the average
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number of spins in state 1 and of spins in all other states. The 1 N-1
same reasoning holds f&; . Now, let us denote Z= W] dl .. .dNexp{ -B> W(i,N)
—1)! =1
n,= number of spins in state 1,
+Bh[(N—1)s— N]J
n= number of spins in any state+ 1. (2.9
N-1

. 1 . . s

| showed in I[Eq. (4.9)] that :m{f driQ(rN_ri)}
1
M:N(nl_n)- (2.10 Xexp{ Bh[(N—1)s—N]}, (2.13

and we must also have
ThereforeB; and B, depend onM, (or P) through n;

andn. _ N N-1
Finding the form of B, /B;) requires several approximate Z= (N—1)! BBy “exg{Ah[(N—1)(s—1)—1]}.
arguments, which will be clearer if we start with a simple (2.149

case, i.e.y(i,j)=0. In the percolation picture, this means no
interactions. In the Potts fluid picture, this means that thdience,
only interactions take place between nonparallel spins, and
these interactions are given by &xp3Wi,j)]=q(i,j) [com- B.—
pare Eq(1.10]. In this case, a spin 1 interacts only with the '
(s—1)n spins which are in non-1 states. Similarly, a non-1 . .
spin interacts only with then;+(s—2)n spins which are Using p(r)=1-q(r) and denoting
non-parallel to it.

The first step is to notice that here we can take already the _ >
limit s—1, since the termg—1) in the denominator in the Ve_f drp(r), (2.19
definition of M, Eq. (1.5), has vanished in Eq2.7). In this
limit, a spin 1 interacts with zerfahe limit of (s— 1)n] other ~ We have

1 L. N—-1
vjdrq(r)} . (2.15

spins, while any non-1 spin interacts with—n=NM other N—1
spins. . N . Br=[1——e (2.17)
The main argument is now that it is easier to flBdand v

B, in the limit M—1, i.e., when practically all the spins are . )
in the state 1. Consider first a state where all the spins are iNOW the powemN—1 represents the number of spins which

the state 1. Such a state can be thought of, for example, ddteract with the non-1 spin. In other words, itig—n for
the limit of an infinitely strong field. Then there are no in- this particular configuration. In the thermodynamic limit it

terspin interaction, and the partition function is can therefore be replaced BN. In terms of the density
p=N/V, we can write

z—ifdl dNex{ BNh(s—1 pVe|“™

=N ...dNexd BNh(s—1)] B,=|1- Ne (2.19
VN

=mexp{/3Nh(s—1)]. (2.11 Now although this equation was derived for the case

M=1, it is actually written for an arbitraryM. Conse-
quently, we will nowassumehat we can use it for all values

However, by definition, we also have of M. This is part of the mean field approximation itself, i.e.,

WN that for the case aof (i,j) =0 we suppose that in the thermo-
Z= mBQ‘exp{BN h(s—1)]. (2.1  dynamic limit,
Br . pVe "N
Comparing the equations, we have tBgt=1. In principle, B_:I.:[\Ijlm 1I-5 =exp(—MpVe). (219

this holds in the limitM—1 only; however, as mentioned
above, in thes—1 limit, a spin 1 interacts with no other I - .
non-1 spins. On the other hand, in our case, the interactio%ubsmmIng this into Eq(2.7) yields

with other spins 1 i (i,j)=0. Thereforeall the interac- M =1—exp(—MpV,— Bsh), (2.20
tions vanish and the above result By can be extended to
all values ofM. Hence,B;=1 in general. or, forh=0,
Next consider a state where all spins but one are in the
state 1 (in the thermodynamic limit, this is stiM=1). M=1—exp —MpV,). (2.21)

Again, the partition function can be calculated easily. For
definiteness, assume that the non-1 spin is always numberddhis equation is very similar to the one obtained in the mean
N. Then, from Eq(1.4), we have field theory of the Ising model. For low densities, its only
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solution isM =0. A nonzero solution appears first when the pc:V_Q' (222
slopes of the two sides of the equation are equallatO.

For the critical densityp., this condition yields the result  Typically [2], the functionp(r) is chosen to be

- 1 ifr belongs to some excluded volumg.around the center of the particle

r)y= 2.2
P(r) 0 otherwise. 223

ThenV =V, and Eq.(2.22 becomes Be MeVe
X=1 v, (2.29
1 PVe
Pc= (2.24 .
Vexc. For p<p., we have thajy— BS. In this caseM =0, so that

. . . . the mean cluster size is
Computer simulationf3] show this result to be correct in the

limit of infinite spatial dimension. This is precisely where % 1
mean field theory is expected to be correct. EHSZ 1=y, (Pc=p) 7 (2.30
Now expanding Eq(2.20 in the vicinity of the critical P¥e
point, we have Hence the critical exponent is
1 2 _ -
M=M ﬁ——Mz(ﬁ) L. (2.25 v=1 (mean field. (2.3)
pc 2 Pc

We now wish to extend this argument to cases where
Hence the percolation probability, which is equalNbin  v(i,j)#0. The essentials remain unchanged. Again we look
this limit, is at the limitM— 1. This time, when all the spins are in the
state 1, the equivalents of Eq&.11)and (2.12 yield

2pC B
P(p)=M~7(Pc—p)~(pc—p) (p=pc), L1 N N
(2.26 Bl:WJ dl...dNex —,Bizli;v(u) .
where in this equationg is the critical exponent oP(p). (2.32
Therefore we find Similarly, if only one spin is in a state other than 1, we have
B=1 (mean field. (2.2 1 N-1
BY B =—f dl...dNexp{— v(ij }
We can now calculate the susceptibility. From E2}20), ! VN BZ& 2’1 (1)
oM oM N .
X=S0] =|BHpVep|n-o|exp—MpVe) < IT ati.N)exd - Bu(i,N)]. (2.33
h=0 =1
(2.28 o : . R
Dividing the two equations, we find that in this limite.,
or M—1)

B, Jfdl.. AN g, Nyexd — B2 1 v(i,j) — Bu(i,N)]

B, fd1--dNexg — B= . 0(i,))] : (2.34

In general, one cannot compute exactly this ratio. Howeverby decreasing the density rather thdn In other words, the
we do not needB,/B; exactly, but only in the region region of interesMp—0 may be obtained by looking at the
M=~0, where the critical behavior occurs. Now, from the |imit p—0 even ifM—1.

previous argumentd3, /B; can depend oM only through We therefore take the small density limit of £§.34) and
the excess spin-1 densiép=p,—p, (Wherep, is the den-  extract the leading behavior. Let us introduce the functions
sity of spins 1 ang, is the density of spins in any state R R

#1). Hence we are interested in the region of srivad. At f(r)y=exd —Buv(r)]—1,

first sight, this seems unhelpful, because E34 corre-

sponds to the limiM — 1. HoweverM p may be made small f*(r)=q(r)exgd — Bv(r)]—1, (2.35
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fT(r)y=f(r)—f*(r)=p(r)exd — Bv(r)].

The functionf(r) is just the Mayerf function [4]. Its use-
fulness stems from its being typically short rangec.,

Equation(2.34 now becomes

B _ Jd1 . NI NI [+ F(L )L+ F*(iLN) T}

B, Jd1- - - dNIGE L [ 14+ £(i4))]

(2.36

f(r)—0 at|r|—]. Therefore, integrals ovef (and over
f* andf as wel) remain finite in the thermodynamic limit. Expanding this expression, we find
B, [dl---dN{1+ZN = if(0, )+ (,N)]+- -}
B Jdl-dN{L+ETS RG]
1+[(N—1)(N—2)/2V]f de(F)+(N—1/v)f drf*(r)+---
= (2.37
1+[(N—1)(N—2)/2V]J de(F)+(N—1N)J drf(r)+---
|
Keeping now only the leading terms in the density, we obtain P=1—exp _ppvl),
1N1/vfd*f** &= <
B, +( ) [ drf*(r)+--- i (p<po),
B, ..
pPe=F= 7,
\Y I
N-1[ ... e fdrf*(r)
=1—Tf drif(r)+---, (2.39
Bwr=1,
where we have used the definitioff(r)=f(r)—f*(r). B
Again, as in Eq.(2.18, we recognize that the terii—1 ymr=1. (2.42

represents jush;—n in this configuration. Hence, once
again, we can replace it witklN and write

B, MN [ . ;
—~1——f drif(n+---=1-MpV{, (2.39
B, Vv

where
vng drf(r) (2.40

generalizes EQ.2.40, to which it properly reduces if
v(r)=0.
To the same order ip, we may also express E.39 as

B
5. ~exi{ —MpV{], (2.4
1

which completes the analogy with E¢R.19 for the case
v=0. Because of this, all the results for the case0 apply

Ill. HEURISTIC VARIATIONAL FORMULATION

We would like now to calculate the connectedness func-
tion in the mean field approximation. The previous argu-
ments are inadequate for this task. One knows, however, that
in the Ising model, the correlation function may be calcu-
lated within mean field theory through a variational formu-
lation based on the Bogolyubov-Feynman inequdhty i.e.,

Z
Z—?exp(—ﬂ(Hl)o), (3.1
0

where the subscript 0 refers to some reference system and
H,="H—"Hy, whereH is the true Hamiltonian of the system
andH, is the Hamiltonian of the reference system.
Unfortunately, this inequality is inadequate to deal with
our system, because the potentiél,j) will typically have a
strongly repulsive part‘hard core”) at short distances, or
else the functiorg(i,j) will typically vanish in some range
(where the binding is certainboth of which make the right-
hand side of the inequality undetermined. One would there-
fore like a variational formulation of the mean field which

to the more general case as well. Hence, for arbitrary poterallows for strong effective interactions. | will show that the

tials and binding criteria, we now find

mean field developed in Sec. Il can be derived from such a
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principle, though | have been unable to formally prove the > B N
principle itself. Its status must therefore be taken at present Z—~ex;{2 (e AV —1) o+ B(h—B) D, (#(\i))o|-
to be essentially heuristic. 0 =1 =1
The motivation is as follows. Let us assume, as usual, (3.7
some refereqce system in which the s.pinsl intergct only withyowever, at this stage it is not clear what has become of the
an external fieldB. The reference Hamiltoniak, is inequality in Eq.(3.5), because the replacement HG.6)
N increases the exponent, thereby countering the Bogolyubov-
__ _ Feynman inequality.
Tto Bizl Y- 32 Nevertheless, for smaBV, we expect that (N)InZ can

N . ) be approximated by the following function:
Then the partition function can be written as

z:i2 JdFl.-.dFN[exp[—ﬁZ V(i j)

1
Fi(B)=|InZo+ 2 (exd —BV(i.))]~ 1)
NEAG B J

N
+i21 B(h=B){#(N\i))of - (3.9

N N
+B(h—B)i§l YN} ]exp[ﬁsiil PN}

Typically, of course\V(i,j) is not uniformly small. The sur-
prising result, however, is that if we use for KdInZ the
' extremunvalue ofF(B) with respect tdB, we shall recover
0 the mean field theory of Sec. II.

N
:Zo< EXF{ _ng V(i1j)+,3(h_5)i=§:l P(N;)

(3.3 The proof is straightforward. First,
where N 2\ (N exd BBy(N)]
. o N W0 =5 e BB O]
ZO_W%} dry- - dryexg BB, y(\)) (s 1)fesPs Ve
WN BT (s—1)e B 39
= [PV (s—1)e PN, (3.9 ,
N! Next, we rewrite
and()q means an average performed in the reference systeraxg — BV(i,\;;j AD1=1=q(i,j)exd —Bv(i,j)]—1
with the Hamiltonian,. The convexity of the exponential o o
function then gives us the Bogolyubov-Feynman inequality, +p(i,j)exd —Bu(i,)]oy \;-
7 N N (3.10
Z—Ozex _'ng V("JH’B(h_B); YD) ' Taking the average with respect to the reference system of
0 3.5 the two terms on the right-hand side, we first find

The usual mean field theory follows from extremization with  (q(j j)exd — Bv(i,j)]— 1>o:izf didj{q(i,j)

respect to the paramet&. The resulting approximation to \4

Z is expected to be good as long@¥ is small. Now, if this _ CoN

is the case, we could also write xexp =Bl ))]=1h
(3.11

_ V',. ~ _ V"' —1' 3.6
BV(i,j)~exd — BV(i,j)] 3.6 which is independent dB.

so that, to this order, The second term is

1 N
(p(i,j)exd —Bu(i,i)18, x)o= mf d1-~-dN{§} p(i,nexr{—ﬂv(i,j)ws;l YN | 8,

1 L _Bv(i-)-EMmj5xi,xjeXp{ﬁB[w(M)Jﬂ//()\j)]}
:_V_Zf didjp(i,j)e 4 _ [eF56-T1 (s—1)e PB2

(1 i .)_ e?hB(s~1 4 (s—1)e 2B
= idin(i i)e—Bv(,
—\ﬁf didjp(i,j)e”# _[eﬁs(3—1)+(s_1)e—5|3]2 . (3.12
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Note that from the definition o\‘/l Eq. (2.16, we have
t

O . Ve
WJdldJIO(l,J)eXF[—BU(I,J)]Zv- (3.13

Substituting Eqs(3.4), (3.9) and(3.12 into the definition of
F.(B) [Eg. (3.8)], we have

F(B)=C+In[efB "Vt (s—1)e FB]

N—1(VI| 288G~y (s—1)e 268
T(V) [ePBS Dy (s—1)e FB? TAh=B)

eBB(s—1)_ o= pB
efBs~ b (s—1)e FB”

X(s—1)

(3.19

where

1
C=(a(i,)extf — Bv(i,})] = L)o+ V= S In(ND)
(3.15

is independent oB.
We now have immediately that

JF, p*s*(s—1)(h—B)e #®*

9B [1+(s—1)e PBs)?
(N=1)VI] Bs(s—1)e #Bs(1—e B
Vv [1+(s—1)e #5)°
(3.16
The extremum conditiodF,/dB=0 yields the equation
B—h= pVe|  1-e P 3.1
T\ Bs | 1+(s—1)e PBs (317

In this approximation, the magnetization is
oF, 9B [ dF,
7B h | h |

(3.18

1 oF 1
B(s—1) éh  B(s—1)

M=

1 (r?Ft)
B(s—1)\ oh 5
where we have used the extremum conditiéh/dB=0.
From Egs.(3.14 and(3.17), we have

e,BB(S* 1)_ efﬁB ﬁs
M= = B—h). (3.1
eBB(S*l)_i_(S_ 1)e7,BB p_VZ( ) ( 9

Hence we can rewrite Eq3.17) as
BsB=Bsh+MpV]. (3.20
Substituting this result back into E¢3.19 gives us

1— e*MpVZefﬁ’Sh

(3.21

- . ,
1+(s—1)e MrVegBsh

6009

which is exactly the mean field equatid®.6) with B, /B;
given by Eq.(2.41). Hence, indeed, all the mean field results
may be obtained from the variational principle fef.

Finally, note that from Eq(3.16), the extremum of, is
actually a maximum. This might suggest the existence of an
inequality Ir=NF;, but | have been unable to prove it one
way or another.

IV. CORRELATION FUNCTIONS

The variational principle now allows us to find the corre-
lation function in mean field theory. To this end, we need to
relate the Potta-density functions defined in E¢L.7) to the
partition function. By analogy with a similar formalism in
the theory of liquidg4], let us define a generalized func-
tional differentiation operator, in the following way. Let

F[t(r,\)] be a functional of the functiot(r,\), which de-
pends on a position variable as well as on an associated
discrete_spin variable. Then the generalized functional de-

rivative 5§77 6t will be defined through the relation

— OF
5f=f dry, —
A

m(r,x)&(r’)‘)’

4.9

wheredFis the change ifF associated with a variatioft in

t(r,\). The only difference from the usual functional deriva-
tive is in the added summation over the spin variable. This
does not change any of the basic properties of the operator.
| shall show below that the Potts correlation functions are
functional derivatives of the partition function, for fields
which are inhomogeneous. In order to extend the mean field
theory to cover this case, we now need to adopt the follow-
ing heuristic claim.
Heuristic assumptiort TheF, variational principle yields
the proper mean field theory of continuum percolation even

for the case of inhomogeneous field¢r) and B(r). The
extremum condition must then be generalized to be

S5F,

————=0, (4.2
S BB(r)y(N)]

which determines the extremizing fieIBJ(F).

The application of this extremum condition yields a com-
plicated integral equation. However, for our purpose, we
only needr,[B] in the regionh(F)—>0 and in the vicinity of
the critical regionM(F)HO. Looking at the results for the
homogeneous case, E(.20, we can expect that the ex-
tremizing functionB(r) will be also very small in this case
(the solution shows this assumption to be self-consistent
Therefore, one only needs to look at the extremum condition
for very smaIIB(F). The details of this calculation are in the
Appendix. The final result is the conditigto first order in
B)

BX)=h(0)+ 2 [ dypi-y)e 6 IBG) 43
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where we assumed tha(x,y) = p(x—Yy). Note that ifB and ~ Similarly, we have that
h are uniform, we recover the first order limit of ER.17),
as we should. This equation is easily solved in Fourier space, 2

h A 1
where

. St(X, @) dt(y, y)z (N=2)In,, 7
. h(k) "

1-(pls)fT(K) It nre ey
1= N -
. r=YiN=7v
with (4.10
fi(r)=p(rye A, (4.5
And a comparison with Eq1.7) shows that
and functions with hats are Fourier transforms of the corre-
sponding functions without hats. 22 . 1), 2 1),
Let us now calculate the Potts correlation functions. We p (X azy,y) = p (X a)p (Y, y)
take . . 52InZ
=t(x,a)t(y,y) (4.1

t(r,\)=exp Bh(r) y(\)]. (4.6) St(X, @) St(y,y)

Then we have for the partition function from Ed..4) . i )
Within the mean field theory we replaceZlrwith NF[B].

1 R N N Making use of the extremum condition, we now have from
Z= m{% dry -~ dryI] (i nyem# v, Eq. (4.9 and the definition of(r,\), Eq. (4.6), that
4.7 ~
. . . ONF N -
It is now simple to see that p(l)(X,a{)=|:—_, ! =7 &HBB(X) ()],
~ \ S Bh(X) ()],
6Z N - - -
>V NI fdrz"'drNH t(ri,\j) (4.12
st(ron) N, 7o =2
- where
x[e*B 2i>jv(|vl)]r. iy (4.9
A=A N N
I'= dzexd BB(z) (N)]. 4.1
Comparing this to Eq(l.7), we see that % f HAB(Z)¢(M)] (4.13

tr.n) 6z oIz (4.9  The easiest way to calculate the pair-correlation function is

p(r )= = y1oc
Z  St(r,n)  snt(r,\) now to use the identity

Do L 1 (GNP )5, o5 1) s
eyl 10 07 = X, = =uy,y = X—Y)0,, Xe)WY¥) == =
SLBh(Y) ()] Sy, y) (X, a) St(X, ) ! St(X, @) 8t(Y, )

=p M (X, @) 8(X=Y) 8,5+ p (X, @) p My, )N P (X, 1y, 7). (4.14
|
On the other hand, we have from Ed.13 that bothh andB vanish, so that we can evaluate all quantities at
zero fields. Thus, using the fact tHatsV in this limit (see
S (Mg . the Appendi¥, we have that
M:{l_ieﬁswwm ppendix
S Bh(Y) (7] r
N oo B ()] Da)| - =2 (416
X—eBBle) ——~ ~ T 7 (4.15 g “lgeo T B=0 s’ ‘
I oLh(y)¢(v)]

We are interested in this function in the rangelp. and  where p=N/V as usual. In the same limit, we also have,
h=0, which is the one relevant for percolation. In this casefrom Eq. (4.195
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75p<1>(§,a) o 1 This expression is consisten_t with E@.42 fothhg mean
R =—=|1-— cluster size through the relation betwemndg' given by
BNy SISV Eq. (1.14.
Sinceff(r)=fT(—r), then for smalk, we have that
5[B(X)¢(a)]
5[h(y)¢/;(—y):| 080 f1(k)=VI-VIk®+0(k*, (4.24
(4.17  where

In the thermodynamic limit, the second term inside the ; -
brackets on the right-hand side vaniskiés presence is typi- Ve= f drf'(r),
cal of the use of the canonical rather than the grand canonical

ensemblg Combining Egs.(4.17), (4.16), and (4.14), we r2
obtain VI=J dr Ef*(r). (4.2
2 ~ -
p_2h<2)(; ay,y)= P w Therefore, for small wave vectors, the pair connectedness is
s S SLhY) (N, _os-0 - .
”T(IZ)~( . (426
~Psx-y)e,.,. 4.18 1-pVL) 1+[VI/(1-pV])IK?
S ,

We expect by analogy with other critical phenomena that
Since the system is now homogenedu$) depends only on

the differencex—y. Taking the Fourier transform of Eq. 37 (K)~ 1 4.27)
(4.18, we have that g 1+ 8K2° '
2 . . . .
pPn p p il where ¢ is the connectedness lengtlwhich in percolation
_h@(k: =_= = ik(x—y) .
27 (ka,y) S5a,y+sf dke theory plays a role analogous to the one the correlation

length plays in other critical phenomef@. Hence we ob-
tained an expression for the connectedness length within

5[ B(X)(a)]
_ (419 mean field theory,

5[h(Y) P(v)]

h=0B=0
i Vip
Finally, we note that from the definition of the generalized §2:__1f: 1_° ~(pe—p) " (4.29
functional derivative, 1-pVe pc=p
E[B(i) W(a)]  SB(X) Thus, we find that the mean field value of the exponers
Q =—= 06, (4.20
Sh(y)y(y)1  ohiy) 7 v=13 (mean field. (4.29
where the expressiofB/ sh on the right-hand side is now a
usual functional derivative. The properties of the usual func- V. DISCUSSION
tional derivative imply that The results of the mean field theory are summarized be-
~ . low:
f ke ) e e P=1 PV{
W, _op_o MK\ _gpo =1-exp(—pPVe),
_ S=——r (p<po)
- — =—F (p<po),
1—(pls) (k) 1-pVe
(4.2) vi
§2= 1
where in the last equality we have used E44). Substitut- 1-pVe
ing this result into Eq(4.19 finally yields
(k) ! ! (5.1
~ N Pc=F =, .
@ (k: - Y, N
h'“(k;a,y) 1—(p/S)fT(|Z) 5a,y' (4.22 e fdrf*(r)
Hence, substituting this into EL.15 finally yields the pair Bur=
connectedness within the mean field approximation, MF
Ymr=1,

= =7 > . 4.2
1_PfT(k) (423 VMF:%-
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The critical exponents obtained are identical to those obThe mean field equations have been derived wholly within
tained in percolation on a Bethe lattice, usually considered athe Potts fluid picture, where heavy use is made of the avail-
the mean field equivalent for the lattice percolation modelable Hamiltonian formulation. The— 1 limit then yields the
This, therefore, addresses one of the questions presentedpercolation quantities, which do indeed have the expected
the introduction of I, namely the extent and nature of themean field properties. It is hard to see how such results could
continuum percolation universality class. As far as mearhave been obtained directly in the percolation picture. This
field theory is concerned, we obtained theoretical proof thaindicates that other methods which can be applied to the
this universality class encompasses all interactiofisj) Potts fluid should yield interesting results for the continuum
and all binding criterigo(i,j), and that it is identical to the percolation problem. This will be the subject of future in-
universality class of lattice percolation. This last, inciden-quiries.
tally, can be considered as a particular type of continuum
percolation with interactions fixing the particles on the sites APPENDIX
of a lattice. Therefore, the question of the independence of
the critical exponents on the interaction is connected essen- The functionalF[B] is defined as in E((3.8),
tially to the relation between continuum and lattice percola-
tion. We know, however, that mean field theory always 1
grossly overestimates universality, as demonstrated by its be- F{(B)= NInZ(pL
ing insensitive even to spatial dimensionality. Thus one can-

(N—-1) o
5—(a(i.i)exd ~ Bo(i,))]- 1)o

not give too much weight to these conclusions. Nevertheless, (N-1) o

the mean field result is an encouraging first step. Certainly 5 (p(i.j)exd —Bu(i.])16y a0

had we found any difference between continuum and lattice

percolation in the mean field approximation, or any depen- +(B[h(j)—=B(j)]¥(\j))o- (AL)

dence on the interaction or the binding criterion, it would

have been highly improbable that a more elaborate calculat/e now have that

tion would have restored universality. Thus, at least, our re-

sults are encouraging, if far from definitive. InZy=NIn(T")—In(N!) (A2)
As to the critical density, we do not expect it to be quan- '

titatively adequate, as mean field results never are. Howevenere

as the dimensionality of the system increases, these results

become better and better. Thus, Alon and co-workéis

showed that, indeed, for a system of permeable hypercubes, — J' > bt

pcVexc— 1 for high dimensions. r Ea drex AB(r)¢(a)]. A3)
As another example, for B-dimensional system of hard

cores and soft shell&7,8], we have Similarly, we have immediately that
S o jf |Fi_Fj|<a ) ) 1 . )
v(h)= 0  otherwise, 6.2 <ﬁ[h(l)—B(J)]l//(7\j)>o:f; fdJeBB(W(M)
i
AR IFi—r | <d 53 X[h(})=B()1#(\;) (Ad)
|1 = . .
P 0 otherwise, and
wherea andd are two length parameters. Then we obtainin, . . .
the mean field approximation (adi.jyexd = Bu(i.))])o
B 1 ~ 1 54 :%E f didjq(i,j)eArl-DeBBOUN +BHw]
pC_CD(dD_aD) - CDdD(l_’I]D)’ ( . ) A v)‘j
(A5)
where n»=d is the aspect ratio, andCp is the
D-dimensional volume of a unit sphere. Hence, in mean fiel i ivexd — i i1s
theory,p. is a monotonic function of the aspect ratjo This c{p( Dex = pu(i] M '}‘J>°
contradicts the result of simulations which shpwto have a 1
pronounced minimum in three dimensions. However, some = FTE f didjp(i,j)
computer simulationg9] show that as the dimensionality NioAj
increases, the minimum becomes weaker, and, at high di- ><e*ﬁv(i,i)eB[B(i)t//(M)JrB(i)df(hj)]5}\i A (AB)

mensions, it appears that does increase ever more mono-
tonically. Hence the mean field result again corresponds t
the limit D— oo,

The importance of mean field theory is thus not so much SInz 1
in the numerical results is yields, but rather in the proof of - -
the usefulness of the theoretical approach presented here. SINBB(X)(N)] T

Q‘aking now the functional derivatives of these terms, we find

exd BB(X)¥(N)], (A7)
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S(BIN(G)—B() 1w\
S BB(X)¢(\)]

=eﬂB<§>“’<h>%{—1+[h<£)—8<i>]w<x)}
- 1 )
- eBB(X)w(A)F% J djefBiIv)
X[h(j)=B()1w(\), (A8)

S(q(i,j)exd — Bu(i,j)]— 1)
S BB(X)¢h(\)]

:eBB&W(A)%E J' dyq(X—y)e A=) ghBIWN)
Aj

- 2
— BBl N Jdidjq(i,j)
IR e

X @~ Bu(i.) gBIBH ) +B() U] (A9)
8(p(i,)exd —Bo(i,1)18), x,)0
S BB(X)¢(\)]
R 2 R TN N -
:eBB<X)$(}\)F7f dyp(x_y)e_ﬁv(x_y>eB[B(y)w(Al)
.2 o
_eﬁB(X>¢()\)_32 fd|d]p(|’l)
IR e
X @~ Bu(i.D) gBIB)Y(N)+B())¢(\))] By (A10)

We now expand these expressions aro#id 0. We have
that

r=> JdFexp[ﬂBG)wan

~§a) de[1+BB(F)¢(a)]. (A11)

6013
We note that
; pla)=(s—1)+(s—1)(-1)=0.  (A12)
Therefore, to first order,
I'=sV+0(B?). (A13)

The identity Eq.(A12) simplifies greatly all the functional
derivatives. To first order,

oz, L X BB ] +0(B?)
SINBB(X)¢(N)] SV ’

(A14)
Aatexd—poiI" Do _ oo g
S BB(X)¢(\) ’
and
S(BING)—B()]1¥(N\))o
S BB(X)¥(N)]

=eﬁB(*>*”<“>si\,{—1+[h<x3—B(>Z>]¢(x>}+0(82>,
(A16)

3(p(i,j)exd — Bu(i,1)18), )
SLBB(X)¥(\)]

- 2 IO il -
= e8BRIN fdyp(x_y)e—ﬁv<x—y>5(y)+0(BZ).
(A17)

Summing up all these expressions and

S equating
6F/8[ BBy]=0, we obtain the condition

B(X) =h(X)+ = f dyp(X—y)e X VB(y)+O(B?).
(A18)
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